
1

Programming Games with Scratch
Teacher's Guide

Contents

About ... 1

Suggested Activity .. 1

Additional Details ... 2

Handout Overview .. 3

Solutions.. 4

Driving Game .. 5

Super Fashion Dress-Up ... 7

Clay Shooting .. 9

Room Escape.. 11

Cat and Mouse .. 12

Moon Landing ... 14

About

“Programming Games in Scratch” is a series of handouts that can be used to teach programming and

computational thinking. The handouts guide students through the logic and algorithms underlying

computer games. They cover many different types of games and different experience levels, so it is

easy to customize your lessons to the interests and abilities of different students. All the necessary

instructions are included on the handouts themselves, so students can often follow them without

guidance from a teacher. As such, teachers do not necessarily need a programming background to use

the handouts in classrooms; nevertheless, a programming background is useful for teachers to help

students contextualize the lessons, to help students when they encounter difficulties, and to direct

students to supplementary material for further learning.

The handouts make use of the Scratch programming language from MIT. Scratch is a free

programming language that can be used from most PCs without the need to install any software. It is

designed to expose programming to students in a friendly environment that encourages creativity and

independent learning.

Suggested Activity

The handouts contain all the necessary instructions to use them. As such, students can follow the

handouts themselves individually or in small groups. Younger students may need adult guidance to read

through the handouts and to stay focused on the tasks.

2

Unless students have experience using the Scratch language, they should all start with the introductory

handout “Making a Basic Game in Scratch.” They simply visit the website listed on the first page of the

handout and then following the instructions on the handout. The introductory handout provides an

overview of the basic functionality and features of the Scratch language by guiding students through

the making of a simple game. The handout is written in a “walkthrough”-style: all steps are described

in exact detail with no occasions for deviating from the suggested solution.

The other handouts are more open-ended and require more reflection by students to complete.

Instructions are described in general terms, requiring students to figure out the exact steps needed to

solve the problems themselves. Each handout is self-contained, so students can choose which handouts

to complete based on their interests and abilities. The handouts also often contain optional sections of

varied difficulties, which students can optionally complete based on their own interests and abilities.

Additional Details

Below is a list of the handouts:

Handout Difficulty Topics

Making a Basic Game in Scratch Introduction Introduction

Driving Easy Movement

Super Fashion Dress-Up Easy-Medium Costumes

Clay Shooting Easy-Medium Costumes, Random

Room Escape Medium Messages

Cat and Mouse Hard-Medium Collision Detection, Artificial Intelligence

Moon Landing Hard Variables

If students want to save their games, they can either

1. Choose “Download to your computer” from the “File” menu at the top of the website

2. After making some changes, sign in to Scratch, click on the orange “remix” button in the upper-

right of the screen, then choose “Save now” from the “File” menu.

Printable copies of the handouts and downloadable versions of the project files can be found at the

website http://o.ooli.ca/en/scratchgames

Do not be constrained by the handouts. Feel free to let students to choose a different direction. Help

http://o.ooli.ca/en/scratchgames

3

foster an independent interest in programming. Encourage them to change the artwork, add their own

sounds, and to experiment with their own ideas. Have them add more enemies, write a story, or adjust

the speeds of things to change the difficulty level.

Handout Overview

Although the handouts are in colour,

you can print them in black & white

without any problems.

Overall difficulty

When you start, go to this website
for the project files

If the instructions are unclear about

how the game is supposed to work,

play the finished game to find out

Steps needed to make a basic game

are in white

Difficulty levels of each step are

listed at the side. These levels are
just guesses. They might be easier

or harder for different people.

Optional improvements to
the game are in grey

These are the blocks used in the

sample solution. Use this list as a

clue about how to solve each step. If

your solution is different though,

that’s ok. The important thing is
figuring out how to solve problems,

not getting the right answer.

If you aren’t familiar with this genre
of game, there is sometimes a

sample game you can try

4

Solutions

Although sample solutions are provided here, please avoid using them.

There are no “correct” or “perfect” solutions to the handouts. There are many ways to program the

same game. It is also possible (and even encouraged) for students to write their own variants of the

games that play differently and use completely different techniques.

The most important part of learning to program is to develop problem solving skills. Learners often

give up and want to see the “answers” too early. In programming, the “answers” are actually

unimportant. The important part of programming is struggling with problems and coming up with

solutions. Some programming problems have no solutions. Some require a lot of reflection and

ingenuity to find a solution. Some problems exceed a programmer’s skill level and require

programmers change their programs to behave in a way that’s easier to program.

The solutions are mainly provided to clarify some unclear descriptions in the handouts and to help

instructors provide hints to guide students.

STOP

5

Driving Game

1. Driving Part 1: Add a block for moving forward

into the forever loop

1. Driving Part 2: The blocks for turning right can

be repeated for turning left and moving forward.

In this case, they were put into a single forever

loop so that the game will continually check if the

keys are pressed forever. The old code for moving

forward is removed.

2. No Shortcuts: When the up arrow key is

pressed, the game should check whether the car is

touching green (i.e. the grass) and move forward a

smaller amount if that is the case.

6

Try It: Speed and Brakes Part 1: It’s the same code

as in step 2 except that a new speed variable is

substituted in for the number of steps to move

forward. That speed variable is initially set to 3.

Try It: Speed and Brakes Part 2: Then, we can start

playing with adjusting the speed. The speed will

initially be set to 0. When the up arrow is pressed,

the car should go faster. That means the speed

should be increased. Do something similar when

the down arrow is pressed for slowing the car

down. Lastly, the car should always move

forward by the speed regardless of what keys are

being pressed.

7

Super Fashion Dress-Up

3. Moving the Pants: You should make the

“Clothes” sprite keep moving to the mouse

pointer in a forever loop.

4. Adding the Pants to the Doll: In the “Clothes”

sprite, you should keep checking if the mouse

button is pressed down, and create a clone of the

sprite if the mouse button is down. You can create

a new forever loop for this, or reuse the loop used

in the previous step. Since clones will be

continually created while the mouse button is held

down, you should wait a small amount of time

(0.2 seconds works well) after creating the clone

to prevent too many clones from being created.

5. More than Just Pants: Although it's possible to

use a “when space key pressed” event block to

check when a key is pressed, it is recommended

that you use an “if ___ then” block instead.

The clones of a sprite will respond to events just

like the original sprite. When a “when space key

pressed” event block is used, all the clothes added

to the doll will change when you press space

because they are clones. You don’t want that. By

using “if ___ then” blocks in a forever loop that is

started when the green flag is clicked, you avoid

this problem.

The code for the “if ___ then” block is similar to

the code from the previous section, except that it

will change the costume instead of creating a

clone.

8

6. Body Styles: In the “Body” sprite, you should

add code that is almost identical to the code you

wrote in the previous section. It's also possible to

use a “when ___ key pressed” event block, and it

is safe to do so since you are not making any

clones of the “Body” sprite, just the “Clothes”

sprite.

7. New Hair at the Press of a Key: The code for the

hair is the same as the code that you wrote for the

body.

8. Hair Styles: The “switch costume to” block can

be used to switch to a costume # and not just a

costume name. Since each hair style has five

colours, you can change the hair style by skipping

over five costumes.

Try It: Clothing Colours: When a key is pressed,

you can use the “change color effect by ___”

block to change the colour of a sprite.

9

Clay Shooting

1. Move the Crosshair: On the crosshair sprite,

have it continuously move itself to where the

mouse pointer is.

2. Flying Clay: On the clay sprite, move it to the

starting position. Then have it just continually

move.

3. Shooting: Write your code on the Clay sprite.

Although it’s possible to use the “When sprite is

clicked” event block, younger kids often have

trouble with that block because the sprite has to

be clicked quickly for the event to trigger (Scratch

will think you’re trying to drag the block), and

they lack the coordination needed to do so.

Instead, it’s more reliable to continually check if

the mouse button is pressed down and the sprite is

touching the mouse pointer. Switch costumes as

appropriate.

4. Play Again: After the clay moves, it should

check if it’s touching the edge and then reset its

position and costume if it is.

5. Different Directions: When hitting the edge, the

clay will not just reset its position and costume. It

will also choose a random direction to move in.

10

6. No Cheating: Hide the clay when it touches the

edge. Wait a random amount. Show the sprite

again after the wait.

11

Room Escape

1-4. Books, Painting, Clock, Door: The code should

be put on the book, painting, clock, and door

respectively. The code is similar for all three.

When the sprite is clicked, they should ask for the

code, and then hide themselves if the right answer

is given.

Try It: Combination Lock: On every single number,

it should advance to the next number when it is

clicked.

Try It: Checking the Combination Part 1: On each

of the numbers, it should announce that it has

changed whenever its costume changes.

Try It: Checking the Combination Part 2: On the books, painting, clock, and door, there needs to be code

that is run whenever one of the numbers on the combinations are changed. It should then check if the

code is correct. Since the costume # is the same as the number being shown, it’s possible to just

compare the costume #s to see if they match the desired code.

12

Cat and Mouse

1. The Mouse: Put this code on the mouse. It

should only “point towards” the mouse-pointer

and then move forward.

2. Cheese: On the cheese sprite, continually check

if the mouse is touching it, and hide itself if that

happens.

3. The Cat: On the cat, just put in some blocks for

moving and bouncing off edges.

4. Caught!: The code below is put on the cat, but

similar code can be put on the mouse instead. In

this case, the code is put in a new, separate

forever loop, but it’s also possible to put the code

in forever loop that you already have.

5. Walls: This can be a little tricky because you

have to be sure that if you touch a wall, you move

back to exactly where you started. Often, the logic

is a little off, and the mouse doesn’t move back all

the way. In that case, the mouse might end up still

touching the wall afterwards, leading to it getting

stuck or to other erratic behavior.

The easiest way to make sure that the behavior is

right, is that ANY time the mouse moves, you

should immediately check if it has a wall and

immediately move it back if it is.

13

6. The Cat and Walls Part 1: The code for moving

the cat is similar to that of the mouse.

6. The Cat and Walls Part 2: Here, it also turns

around when it hits the wall.

7. Walking the Maze: Instead of turning 180

degrees, the cat should turn a multiple of 90

degrees instead.

Try It: Less Jumpy: If the mouse is too close to the

mouse pointer, it will “overshoot” the mouse-

pointer when it moves towards it. To avoid this

problem, don’t move if the mouse is already close

to the mouse pointer.

14

Moon Landing

1. Basic Movement: Just copy the code for moving

left and right in order to move up and down.

2. Crashing: Add some code to the “forever” loop

that checks if the ground is hit or not.

15

3. Space Movement: Instead of having the left and

right arrow keys change the x position directly,

these keys will change the x speed. The x position

will be continuously changed by the x speed

regardless of whether the arrow keys are pressed

or not.

4. Up and Down: Do a similar thing with the up

and down arrow keys.

16

5. Moon Gravity: Gravity is simulated with just an

extra block that changes the y speed every turn.

6. Landing: Since the previous code stack is

getting a little long, here the code for landing is

put in a separate stack, but it can also be merged

into the existing forever loop.

